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ADVANCED MATH

OBJECTIVLS

1. Given a series of numbers, you will be able to multi-
ply and divide them using logarithns with 80% accuracy.

2. Given a 2 x 2 maté4ix, you will be able to:

1. transpose it H

2. find its determinant
3. find its inverse, if it has one
4. multiply it times another 2 x 2 matrix.
Given a test covering the above material, you will be

abie to complete 70% of it accurately.




~ Rationale:

Scientists and engineers at times find themselves

presented with a problem such as the one below.

d

x = 967 Find x.

" The easiest way to do this problem without a sophisticated

"

calchlator, is by using logaritlims.
This package offers a review of working with fractional

exponents and shows: you how you can invent logarithms, and‘

=

then use then.

Behavioral objective:

Given a series of nuqbe“a, you will be able to multi-

ply and divide them using logarithms with 80% accuracy.
Pre-test:

Simplify by using iogs. (no calculator or computer)

(.921)7(762) (1.57)
(¥820) (¥1500)
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7Information Sources:
Textbook - MoqernxAlgebra and Trig. Dolciani

Read DataTBrief $1 *"Exponent Arithmetic*
Read Data Brief # 2 *Linear graph Paper"
Read Data Brief # 3 "Semi-log Graph Paper”
Réad Data Brief # 4 "Inventing Logs"

Read Data Brief # 5 "Computations wi+h Logs" -

In your text, do written exerciges p. 354, #1-16, all
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Data Brief % 1
Operating with exponents.

2 x2x2x2-=2"

5 = 5!
The exponent tells how many times the base is used as a factor.

=

a(a) (a) (a) (a) (a) = a®

bxbxbxb...xb=b" vhen there are n factors.
is read as "c squared, or ¢ to the second power”

d® is read as "d cubed, or d to the third power"

is read as "a to the fourth"

b® is read as "b to the ninth"™

Consider!! 2% 22 = (2.2+2)(22) = 2¢2:2.2.2 = 25
3% 37

(3:3-33)(3-3-3.3.3.3.3) = 3.3.3.3.3.3.3.3.3.3.3

- 3!!

In General a%.al = am+n




Consideri!’ 2% 2.2.2.2.2 222 ~ 2
l 3 = 30272 33722 =4=2
a” m-n ;
l In General —fqh = a
a
2. 789 - | 1056 . X |
l 2 789 1056 2
ﬁ l 2° = 1 789° = 1 1056° = 1
l Consider!! _:;_ - a?-7 = a-S
, ' But a* _a-a .1
' - a’~ a.a-a-a-a-a-a _a’
i o
In general a = =-—r
‘ : ' a
: Consider!! (5%) 2= (5%)(5?%) = 5°
m n mn

In General (a) = a

R a———-

Example: _L>-'?- _!__. - -"I’-" Ty _[_-_.3'*
- 4
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- This means some number times itself equals 9. Therefore -
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Data Brief # 2

We review briefly what the graph of a function looks like.
ir graphing the function "y = 2x + 3, we obtain a graph

whecn locks like: //

<

b
1

.q-t.ncnﬁr;qm
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We observe that when x is the value 0, y is the value 3.

This is written as (0,3)

When x = 2, y = 7, and the point (2,7) is plotted. ,
When x = 1.25, y=5.5 (y = 2(1.25) + 3) This value for y
is easier to calculate from the equation than it is to look
at the graph, and try to calculate it.

But sometimes it is easier to "guess" at a value on

a graph than it is to calculate itl!
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Data Brief # 3

Suppose we wish to multiply 1000 and 100. The product is
100,000. But lets try to multiply by adding (exponents).
1000 = 10°

100 = 102 10° x 102 = 102 * = 10°

MATHEMATICIANS ARE LAZY !l!!1]

Isn't it easier to add 2 + 3 inst2ad of multiplying 1000 x 100.

How about 2000 x 100 2 x10° x 102 = 2 x 10° = 200000
3000 x 600,000,000 = 3 x 10® x 6 x 10° = 18 x 10%!
= 1800000000000

Now: 20 = 2 x 10 o

200 = 2 x 102 .

In the above two examples, you can't simplify any further,
and you can't find out the actual value of 2 x 102 because you
don't know how to express 2 as a power of 10.

Let 2 = 10X  then 2 x 10%= 10% 102 = 10%*2

2x
2 x 2-would be 10

Thus extending this system for all numbers besides 2, we could

multiply by adding exponents!!!l!



We will now attempt to find the powers of 10 for such numbers
as 2, 3, 5, 6, etc., so that we can use exponents to multiply
any two numbers togetﬁer.
For example:
2x6 =12
We will rewrite this problem as
2 x 6 = 10" x 10Y = 10M*Y
where 100 = 2 and 10Y = 6
. Thus we can add the_exponents h and y in stead of multi-
plying the numbers 2 and 6. 3
_#p Keep in mind that this is the goal of this package: to

add instead of multiply.

At this point you should ask the teacher for a demonstration

on using semi-log graph paper.
Data Brief # 4

2 = 10%

We will now try to approximate the -above value of x

by numerical methods.

O

10° = 1
10! = 10

RO

There is a number x such that 10¥ = 2
10° = 1

A

10¥ = 2
10% = 10

Q " ' )
JERJ(: 7?husr x is greagerrthan 0 and less than 1.
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We now will try to find 2 as 10 to escme power.

2 =38

2% =16
2% = 32
2% =64
27 = 128
2% = 256
2%= = 512
2'% = 1024

Now 1024 = 1000(1.024) = 10%(1.024)

But 1.024 = 1 (The waving equals sign means approximately.) .

hence -
21 ~ 10°

-

But , -
210 __.(21)10 and 10° = (10.!) 10
Thus
(21)10 ‘;}:(10")19
Or
2~ 10°

2(2) will become 10?(10) = 104

Thus multiplication becomes the addition of exponents! !
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Data Brief # 6

The teacher will demonstrate the use of the log tables in

the back of your textbook.




Activity # 1

Complete the Qo\\owhg provlems .

[ 53(®)

:2 x3 4=
bebeb bbb
3.3-3-3=

Q-Q'Q.-Q_-c\_.x-x-h-g ) l

1 - 39, odd problems and ¢ 40
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In the textbook p. 335
p. 337 1 -16 all il
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Activity # 2 S e

-

THIS IS A REVIEW OF WHAT THE GRAPH OF A FUNCTION LOOKS LIKE., IF You

N GRAPH Y = 2X + 3, YOU GET A GRAPH WHICH LOOKS LIKE THE FOLLOWING:
5-
7
3
1T
’ R ELEE X
Tir
- ~21
-3 4
44
You CAN OBSERVE THAT WHEN-X 1S 0, Y 1S 3, AND WHEN X 15 2, Y 18 7,
1, By READING FROM THE GRAPH, WHAT VALUE DOES Y HAVE WHEN X = 1?

2, NOW CALCULATE THE VALUE OF Y USING THE FORMULA Y = 2X + 3
WHEN X = 1. '

3. WHAT VALUE OF X CAUSES Y TO TAKE ON THE VALUE OF 0?




SUPPOSE WE NOW WISH TO GRAPH Y = 27, PICK A VALUE FOR' X AS LISTED
IN THE TABLE BELOW AND DETERMINE THE CORRESPONDING VALUE FOR Yo

VALUE OF VALeE OF

—
PLOT THE POINTS YOU OBTAIN IN THIS TABLE ON A GRAPH, WYSE TWO DIFFERENT

SHEETS OF GRAPH PAPER, ONE FOR THE VALUES OF X FROM 1 To 6. AND THE
OTHER FO" THE VALUES OF X FROM -5 To 1.
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Now OBSERVE YOUR GRAPH AND ANSWER THE FOLLOWING QUESTIONS,

1. THE VALUE OF Y FOR Y =2X 1S ALWAYS POSITIVE
2, AS X INCREASES IN VALUE, Y ALSO INCREASES IN VALUE

3,  WITH A CAREFULLY DRAWN GRAPH, VALUES OF Y AND X XAN BE
READ APPROXIMATELY TO 2 OR 3 DECIMAL PLACES

USING YOUR GRAPH, WHAT IS THE VALUE OF Y FOR X = 2,5

USING YOUR GRAPH, WHAT IS THE VALUE OF Y FOR X = 1,57
ALSO FIND THE VALUE OF Y FOR X.= ,5

WHEN X = .3, WHAT IS THE VALUE FOR Y?

PrRoBLEMS 4 THRU 7 USE A PROCESS CALLED INTERPOLATION,

TRUE




/

W R W W T e T T

Activity # 3

>
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Graph the function y = 10x using the table below
after you have filled it in.

vValue of Value of value of

x 10% y

Graph this function using 3-cycle éemi-log paper. Only

" use the values of x from -1 to 2.

Using your graph, you will obtain the following values;

-

w0t - w0t 107 -

19°2 10°° 10°% =

.3

10°6 10 =




Activity # 4

6° = 10,077,696
6° & 107

Remember 2 x 3 = 6 and you already know 2 = 10¥

N = 10%¥

€ o 0 e w2

10 1
More hints: 2 x 5 = 10, 7x7 ~ 50

Adding exponents from the above table, how close do you get

g

]

to the actual value fqr

f

A

5 x5 x 4

It o o e 51

B D e by ey
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Activity # 5

Graph N = 10* on 1 cycle semi-log paper, x = 0 to 1.

Make each tenth equal to 5 divisions across.

tables below

=

X N x

B 00~ U b Lo B
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In the :ollowing problems use the tables on the przceeding
page. You may not use the calculator except to check ycur

work. Use the powers of ten as in the data brief.

) .7 .2 5%
i, 107 xto™ x(o
—— IR o e ——
2.4 1]
107 "x o !
9 Cf 3'7 }'q
s 2 lo -
9. o T a0 Ale
21 7.1
16" 19
3. 39.8 x 126 x 25.1 x 1.58 _ .
501 x 3.16 -
¢ 794 x 15.8 x 1.26 x 31.6 -~
' 63.1 x 251 =
: v




Post~test:

Opem book test. Use logs only, no calculator.

Find x

/5
/.

1. X

,’ ,
‘c73070 x 101°

857 x 682
X = 1.67

credit

2 = 10° 312 = 531,441

Your method is what will determine your grade,
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Rationale:

Engineering statics problems use determinants. De-

terminants are part of Matrix algebra,

i b - -

This package develops some of the basic ideas of
It is hoped that after completing this

k

Matrix algebra.
package, you will see the necessity for defining the laws

W———-——- rT——r
,

of an algebraic system.

Behavioral objectives:

Given a 2 x 2 matrix, you will be able to -
l. transpose it
2. :ind its determinant
3. Find its inverse, if it has one
4, multiply it tines another 2 x 2 matrix.

Given a test covering the above material, you will be

able to complete 70% of it correctly.

Pre-test:

rina AT, AT, A2, ()
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Information Sources: *

Read Data Brief # 1 "Matrix Operations"

Read Data Brief # 2 "Multiplication of Matrices"

Read Data Brief ¢ 3 “The Identity Matrix®
§ ‘ Read Data Brief # 4 "Inverse Matrices"
> f ) Read Data Brief ¢ 5 "Determinants”

Read Data Brief # 6 "Sum Notation"
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Data Brief # 1 . SR o

e é'%;"":'
As you have studied more and more sophisticated math- -
ematics, you have had occasion to use more and more sophisticated
kinds of numbers. You began with the set of counting numbers,
l, 2, 3, . - .. Then in oreder to make subtractions like - -
3 - 7 possible, the system was extended to the tntire set of in-
tegers, O, &1, 42, &3, . . .. Next, in order to make it possible
to divide any number by any nonzero number, rational. pumbers . -
like -1/2, -2/3, -157/321, and 4/2 were invented. This did not
bring you to the end of the story, for, in order that every -
positive number should have a square root, a cube root, a log-
arithm, etc., it was necessaiy toﬁinvent sgill Toighgumbers:
the Infinite decimals or real numbers, such as 1. ooy
3.1415928,.., and 0.131313.,... Finally, in order that negative
numbers should also have square roots, and that such quadratic
equations as ' .

XX +x+1=0

shculd have solutions, it was necassary to invent complex numbers
like 3 + 2i, 1 +7ri, etc. -

) Whenever there has seemed to be a good reason to do so,
new sets of "numbers" have been invented. For instance, in in-
venting complex quantities, we began not with the quantities
themselves but with a purpose: to find a system of numbers each
of which has a square root. When one such invention has been
made, it is not hard to realize that there is no reason to stop
inventing.

It is easy to invent things that do not work, but hard
to invent things that do work—easy to invent things that are
useless, but hard to ;invent things that are useful. The same
is true of the invention of new kinds of numbers. The hard thing
is to invent useful kinds of numbers, and kinds of numbers
"that work". Neve.theless, several more or less successful new
kinds of numbers have been invented by mathematicians. At this
time, you are going to study one of the most sucessful of these
new kinds of numbers: the matrices.

Matrices are useful in almost every branch of science
and engineering. A great number of the operations performed by -
the giant "electronic brains" are computed with matrices. Many
ﬁgoblems in statistics are expressed in terms of matrices. - .-
trices come up in the mathematical problemsof economics. - They
are extremely important in the study of atomic ghysics; indeed,

atomic physicists express almost all their problems in terms of -
matrices, and it would not be an exageration to sag that the
algebra of matrices is the language of atomic physics. Many
other kinds of algebra, such as complex-number algebra and'

vector algebra, can be explained very easily in terms of matrices.
So, in studying matrices, {ou will be studying one of the newest
and most important, as well as one of the most interesting
branches of mathematics.
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Now let's take a look at a few simple examples. L
Many a baseball fan, when he first opens the nswspapér;_
refers to a tabulation similar to the following: E

G AB R H

Aaron ‘68 280 52 109
Williams 52 19 29 60
Mantle 60 22 51 170
Lopez 63 241 38 172

If he is a Mantle fan, he looks at the entry in the third row and
fourth column of numbers in order to learn hew many hits Mantle
has thus far obtained during the season.

You will note that we have said "row" in speaking of &
horizontal array, and "column" in speaking of & vertical array.
Thus the third row is ' :

60 228 51 70,
-and the fourth column is
109
60
70
72
the fol%gwgizegg%:f of TV sets might have before him a table of
Model A Model B Model C

Number of tubes 13 . 18 20
No. of speakers 2 3 &4

This table indicates the number of tubes and the number of speakers
used in assembling a set of each model. - : ;

Omitting the row and column headings, let us focus our at-
tention on the arrays of numbers in the last two examples:

68 280 52 109
52 194, 29 60 13 18 20
60 228 51 70 2 3 4
63 241 38 72

Such arrays of entries are called mat:.ces (singular:

A S e,

it
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matrix). Thus a matrix is a rectangular array of entries appearing
in rows and columns. Actually, the entries may be complex numbers,
functions, and in appropriate circumstances even matrices them-
selves; however, with a few exceptions that will bé clearly
indicated, we shall confine our attention to the real numbers

with which we are already familiar. :

Some examples of matrices are the following: -

! o
G pmfi)feoed @

You will note here how square brackets [ ]are used in the .mat.h- '
ematical designation of matrices.

.. great advantage of this notation is the fact that you
can use it in handling large sets of numbers as single entities,
thus simplifying the statement of complicated relationships.

The order of a matrix is g.ven by stating first the number
of rows and then the number of columns in the matrix. Thus the
oreders of the matrices in the foregoing examples (1) are re-
spectively 2x3 (read "2 by 3"), 2x2, 4xl1, 1x3. Generally a
matiix that has m rows and n ‘columns is called an mx n
(read "m by n") matrix, or a matrix of order mx n.

If the number of rows is the same as the number of ¢ol-

umns, then the matrix is square. Thus, given two linear equations
in two unknowns. )

2x + 3y =7
x=-2y=0

you observe that the coefficients of x and y constitute a

square matrix:
2 3
1l -

Vhen speaking of a square matrix (n x n), its order is often re~
ferred to as n rather than n x n. For example, the 2x2 matrix

;3

is a square matrix of order 2, and the 3x3 matrix
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Now let's take a look at a few simple examples.

Many a baseball fan, when he first opens the newspaper,

refers to a tabulation similar to the following:

L G AB R H -~
Aaron (68 280 52 109
Williams 52 19 29 60
Mantle 60 22 51 170
Lopez 63 241 38 72

"If he is a Mantle fan, he looks at the entry in the third row and

fourth column of numbers in order to learn hew many hits Mantle
has thus far obtained during the season.

You will note that we have said "row" in speaking of &
horizontal array, and "column" in speaking of a vertical array.
Thus the third row is . .

60 228 51 70,
and the fourth column is
109
60
70
72

An assembler of TV sets might have bsfore him a table of
the following sort:

Model A° Model B  Model C
Number of tubes 13 18 20 ’ b
No. of speakers 2 : 3 b

This table indicates the number of tubes and the number of speakers
used in assembling a set of each model. e

Omitting the row and column headings, let ué focus oﬁfrat-
tention on the arrays of numbers in the last two examples:

68 280 52 109

SR E AR
63 24,1 38 72

Such arrays of entries are called matrices (singular:
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matrix’. Thus a matrix is a rectangular array of entries appearing
in rows and columns. Actually, the entries may be complex numbers,
functions, and in appropriate circumstances even matrices them-
selves; however, with a few exceptions that will be clearly.
indicated, we shall confine our attention to the real number

~with which we are already familiar. .

Some examples of matrices are the following: .

-

. " L )
[ g -9’&?115]\[-(:; oF'/z 1/ 1/9 (1)

You will note here how square brackets [ Jare used in the math-
ematical designation of matrices.

R oM

A great advantage of this notation is the fact that you
can use it in handling large sets of numbers as single entities,
thus simplifying the statement of complicated relationships.

- The order of a matrix is given by stating first the number
of rows and then the number of columns in the matrix. Thus the
oreders of the matrices in the foregoing examples (1) are re~
spectively 2x3 (read "2 by 3"), 2x2, kx1, 1x3. Generally a
matikix that has m rows and n columns is called an mx n
(read "m by n") matrix, or a matrix of order mx n.

If the number of rows is the same as the number of col-

umns, then the matrix is square. Thus, given two linear equations
in two unknowns. .

2x + 3y = 7
x-2y=0

you observe that the coefficients of x and y constitute a

square matrix: '
2 3 SRRV

Vhen speaking of a square matrix (n x n), its order is often fe- :
ferred to as n rather than n x n. For example, the - 2x2: matrix .

2 1 CREL
3 I

is a square matrix of order 2, and the 3x3 matrix
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2 3
-5 6
8 -9

~1 5= -

is a square matrix of order 3.

If the number of rows is 1, as in the fourth example
in (1), above, the matrix is sometimes called a row matrix or a
Yow vector. For example in terms of rectangular coordinates, a
point in a plane might be designated by the row matrix f2 gy ’

or a point in space by the row matrix l? 3 -i)

Similarly, a column matrix or column vector is a matrix
having just one column. '

Read in your textbook- at the top of page 544 about a

"transpose."
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Data Brief # 2

Thus far, we have defined and studied the addition and
subtration of matrices and the multiplication of a matrix by a
number. We still have not defined the product of two matrices.
Since the formal definition is somewhat camplicated and may at
first seem odd, let us look at a simple practical problem that
will lead us to operate with two matrices in the way that we shall
ultimately call multiplication.

In a previous section, the number of tubes and the number
of speakers used in assembling TV sets of three different models
were specified by a table:

Model A Model B Model C

Number of tubes 13 18 20
Number of speakers 2 3 L

This array will be called the parts-per-set matrix.

Suppose orders were received in January for 12 sets of
model A, 24 sets of model B, and 12 sets-of model C; and in
February for 6 sets of model A, 12 of model B, and 9 of model C.
We can arrange the information in the form of a matrix:

January February

Ml

Model A 12 6
Model B 24 12
Model C 12 9

This will be called the sets-per-month matrix.

To determine the number of tubes and speakers required in
each of the months for these orders, it is clear that we must use
both sets of information. For instance, to compute the number
of tubes needed in January, we multiply each entry in the lst row
of the parts-per-set matrix by the corresponding entry in the
1st column of the sets-per-month matrix , and then add the three
products. Thus the number of tubes required in January is *

13(12) + 18(24) + 20(12) = 828

To compute the number of speakers needed in January, we multiply
each entry in the 2nd row of the parts-per-set matrix by the cor-
responding entry in the lst column of the sets-per-month matrix
and then add the products. Thus the number of speakers for
January is

2(12) + 3(24) + 4(12) = 144

For February, first we multiply the entrics from the lst row of
the parts-per-set matrix by the corresponding entries from the

2nd column of the sets-per-month matrix and add to determine the
number of tubes; secondly, we multiply the entries from the 2nd
row of the parts-per-set matrix by the corresponding entries

from the 2nd column of the sets-per-month matrix and add to deter-
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mine the number of speakers. Thus the number of tubes and speakers
for February are, respectively, :

13(6) + 18(12) + 20(9) = 474
and
2(6) + 3(12) + 4(9) = 84

We can arrange the four sums in an array, which we shall
call the parts-per-month matrix:

January February
Number of tubes 828 L7
Number of speakers 141 7 84

Can we now represent our “operation" in equation form? Yes.
P P

12 6] o
13 18 20 _f828 474
2 3 4] 12]=fus B4
12 9

We have'multiplied' the parts-per-set matrix by the set-per-month
matrix to get what should be expected, the parts-per-month matrixl

Note that, in Equation (1), 828 equals the sum of the prod-
ucts of the entries in the lst row of the left-hand factor by the
corresponding entries in the first column of the right-hand factor.
Likewise, 47L equals the sum of the products of the entries in the
1st row of the left-hand factor by the corresponding entries in
the 2nd colimn of the right-hand factor, and so on. Consider the

"product® metrix
[szs 4712]
14, 8l

in the symbolic form,
a1 212

- Jax a22

The subscripts indicate the row and column in .!which the entry
appears; they also indicate ste~Tow and column of the two factor
matrices that are combined to get that entry. Thus the entry a,,
in the 2nd row and 1lst column is found by adding the products
formed when the entries in the 2nd row of the left-hand factor are
multiplied by the corresponding entries in the 1lst column of the
right-hand factor. The most concise description of the process
is: ‘"Multiply row by column."

The description, "Mulgigl* row by column," of the pattern
in the foregoing simple practical problem serves as our guide in
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establishing the general rule for the. multiplication of two matices.
Very simply the rule is to multiply entries of a row by corres-
ponding entries of a column and then add the products. Thus, given
two matrices A and B, to f£ind the entry in the j-th row and J-th
column of the product matrix AB, multiply each entry in the i-th
row of the left-hand factor A by the corresponding entry in the
j-th column of the right-hand factor B, and then add all the re-
sulting terms. Since there must be an entry in each row of the
left-hand factor to match with each entry in a column of the right-
hand factor, apd conversely, it follows that the product is not -
defined unless the number of columns in the jeft-hand factor is
equal to the number of rows in the right-hand factor. When the
number of columns in the left-hand factor equals the number of
rows in the right-hand factor, the matrices are conformable for -
multiplication.

A diagram can aid understanding; see Figure 1-1.

il

—~3—~)

1.
n

P
A | AB
le—1p—>1 g| le=m—t -
le—m —|

Figure 1l-1. Matrices A and B that are conformable for
multiplicaiion. The. number of columns of A must be
equal to the number of rows of B. Then the product AB
has the same number of rows as A and the same number
of colurms as B.

An entry in the product AB is found by multiplying each of
the p entries in a rovw of A by the corresponding one of the p
entries in the column of B and teking the sum; see Figure 1-2.
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Figure 1-2. Determination of an entry in the product
AB of matrices A and B that are conformable for mul-
tiplication. )

Thus, for the matrices

1 2 3 [1 o
A= |4 5 6 Be |2 1
7 8 9 v

to form the product AB, we compute as follows:




Diagram of matrix multiplication

IR
‘ [au+bw av+bx}
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§ a b u, au + bw av + bx
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=l P, 2 w 3 cu + dw ’cv+dx
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Data Brief # 3

You may be wondering iff there is an identity el-
ement for the multiglicatien of matrices, namely a
matrix that plays the same role as the number does
in the multiplication of real numbers. (For all real
numbers a, 1lxa = a = axl.) Tiere is such a matrix, cal-
led a unit matrix, or the identity matrix for multi-

———

plication, and denoted by the symbol I. The matrix Ia,

namely, :
l 0

is called the unit matrix of order 2. The matrix '

1 0 C
0 01

is called the unit matrix of order 3. In general, the
unit matrix of order n 1is the square matrix

[Bii]nxn
such that ej3 =1 for all i=j and ejj = 0 for all

i#3(i=1,2,...,n; j=1,2,...,n). In general the
theorem for the identity matrix states that

IA = A =-AlL.

For example,

1 2 i 2
3 4 1 o]_|3 &
5 6 0 1 5 6

and

1 0
01
0 0

OO
W\
o N
)
A
oNE N




We now turn our attention to the problem of matrix div-

ision. (Instead of dividing b£ a number, 2, we will

multiply by its reciprocal, 1/Z.) This problem arises

when we seek to 501X§ a gatrix equation of the form

Let's look at a parallel équation concerning real numbers,
ax = c.

Each non-zero number a has a reciprocal 1/a, which is

often designated a-l. Its defining property is aa™l = 1.
Since multiplication of real numbers is commutative, it

follows that a~la = 1. Hence if a is a non-zero number,
then there is a number b, called the multiplicative in-
verse of a, such that

ab = 1% ba (b=a—1),
Given an equation ax = c, where a # O, the multiplicative
inverse b enables us to find a solution of x; thus,

b(ax) = be
(ba)x = be
1x = be
x = be.

Now our question concerning division by matrices can be
put in another way. If A€M, is there a BE€M for which
the equation

AB =1 = BA

is satisfied? We shall embloy the more suggestive nota-
tion A~Ll for the inverse, so that our question can be

restated: Is these an element A-1 M for which the
equation -1 = )
AA™" =T =A""A

is satisfied? . ‘ T v Tl umia
From the fact that there is a multiplicative inverse
for every real number except zero, you might wrongly infer

. & parallel conclusion for matrices.
Now let us try to find the inverse of the matrix

designated A, where
: 6]
= ’
00

A_.
and try to solve the equation AX = I.
If we let -

A}

then we find that

1 Ollp q
AX = = P .
0 Ofir s 00
Hence, no matter Whi§ en;ries we take for X, we cannot have

since the entry in the lower right-hand corner of AX is
zero, and the entry in the lower riﬁht-handicorner of I is 1.

-

At this point you might be thinking that po matrix




has an inverse, But, note that I'I =I=1II, This
" means that I is its own inverse, just ¢ 1 is its
. own inverse among the real numbers.

Also, note that
e AR 9-B 36 30
0

| i

I Thus the matrix A= 2
~ {1
|

h&s the inverse
1/2 O
; A-l =
0o 1/2

Consequently, ?ne equation AX = B may be solved by the
use of an inverse matrix in the case illustrated below.

o d

Now multiply both sides of the equation by A-l,

1/2 ofzc?,x 172 ol[1 2

0 1/2 0 2 o0 1/2]]3 &

[1 o] [1/2
X

372

[1/2

372

) Hg.
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Data Brief # 5

It is the purpose now to develop a general method of
determining the inverse of a 2 x 2 matrix. Instead of
having specific numbers for entries, we let

a b
A=
c d
The inverse will be represented by B, where
P q
B =
If AB = I, then
a bl [p q ap + br aq + bs [} 0
¢c df |r s cp + dr -c¢q + ds 01
This matrix equation may be written as four equations,
ap + br =1 (1) ‘aqg + bs =0 (3)
cp + dr = 0 (2) cq +ds =1 (&)
Since we wish to find values for p, Q, r, s, in terms of
the real numbers a, b, ¢, and d, we multiply Equation (1)
by d, Equation (2) by b, and then subtract. We obtain
adp - bep = d
(ad - be)p =d

or

Repeating this process, using appropriate pais of equations,
we obtain

(ad - be)q = -b, (ad - be)r = -c, (ad - bc)s = a

Should it happen that ad -~ be = 0, then it follows
from the four equations, above, that a = b=c=d=0,
so that A = 0. But the zero matirx has no inverse, Jjust
as O has no inverse in regular algebra. In the beginning
of this section we assumed that A did have an inverse, B}
hence if ad - bec = 0 we have contradiction of this
assumption. In other words, if A has an inverse, then
‘ad - be # 0.
) Temporarily, let us denote the number ad - bc by h.
Now if h # O we may write

p=d/h, q=-b/h, r= -c/h, s = a/n

Substituting these values appropriately in B, we obtain




d/h  -b/h i -l/h[d -b

¢/h a/h c a
In order to show that this matrix ié the inverse of A,
we check )
d -b Cad-bc  -abtab |
a b h h h h 1-0
AB = = - = - I‘.
¢ d| |-¢ =2 cd-ed -betad 01
' h h h

i h

By the same procedure it can be shown that BA = I. The
fact that this relationship follows from the relationship
AB =1 is quite significant. t‘/hile the definition of- the
inverse demands the existance and eyrality of what are
called left and right inverses, we have showb that for
2 x 2 matrices the existance of one implies the existance
of one implies the existance of the other and that if they
exist, then they are the same. Since the multiplication of
matrices is not generally commutative, you might have ex-
pected otlerwise.

Formally the theorm for matrix inverses states that,

-

) a b
If and only if the matrix has an inverse, then
¢ d
&d-bCfO.
a ﬁ ) }
If =X then &{(X) = ad ~ bc and is called the
c d

determinant of X.

|4




Data Brief # 6

1r S=xy+xp+...X It may also be
P
written as S = érx-
J= J
2 2

P
For example, Z jz =17 + 22 + 32 + hz + 5% =55
=]

The formula for the sum of the firs® -~ positive integers is,

l +2+3+, . .+p=—p—(-9l—l—)- Itcanalsobé

p
expressed as ij ~plp+1)

31 .
In this notation, the sum 331b1t+332b2h + ...t a3PbP4

p
is expressed as jgl aijjh

You might recognize this as the element in the third row
and fourth column of the matrix AB, ’

(Activity # 6 is a lecture)




Activity # 1

P. 546
In your text book, do all odd problems 1-21, and 24, 26.

Activity # 2

P. 551
written exercises, # 1,3,5,7,9

In your text book,

Multiply the two matrices below.

rix algebra, multiplication is not com=

Prove that in mat
mutative.
Set the

Set up the proof that multiplication is assodiative

+

4

.

i,
A
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Activity # 3

Find. x such that when A is multiplied times B the product
is the identity matrix !}.

That is AB =1

2 5
A= B
1 3

I
|
l
l
|
{
i
{

| Ykt L

-x -14x 7x
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ACTLIVILY & %

1. Which of the following pairs of elements are inverses
of one another?

(a)
(v)
(c)
(d)

(e)

(gi 2. ‘ e 1::" l!,\ o I oW O

-1 3 5 3
2. The matrices and are inverses of
. 2

-5 2 1
one another. Are their squares also inverses? Their
transposes?




1. For each of the following matrices, determine whether the inverse
exists; A if it does exist, find it.
L 2
cl)[1 1]

a) %) ﬂ ﬂ c) [’3 7]
-2 0 2 a 2 -
S ER I [o -7] 5’[-1 3]
2. Determine those values of x for which the matrix has no inverse.
x2 1 x3 X x+2 0 x2 x-1
a) b) C) 4 d)
Lox 0 1 X x-1 2 3

In each exercise ising the matrices below, show that'

AB) =
J(AB) 6(A) §(B) and also that 5(8'1) _m)_

in exercise 3 above show that £(tA) = £26(4)
1 2 1
2 ] and B = [5 ] Show THAT
S). 7

a b
g, If XU is the transpose of X, and X = [ ] show that

C N
6(x) = 8(x*) and conclude that & (AA%)3 0.
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Information Sources:

Read Data Brief "Set Notation"
Read Data Brief "Functions"
Read Data Brief “Graphing a function"

Read Data Brief "Constant and Linear Functions"

Read Data Brief "The Absolute-value Function"

Read Data Brief "Inversion"




Data Brief # 1

A set is a collection of objects - not necessarily
material objects - described in such a way that there
is no doubt as to whether a particular object does or
does not belong to the set.

Usually capital letters are used to designat'e sets.

A set may be described by listing its elements with-

A=£1,2,3, 43

or by using the set-builder notation, as

in braces, as

A ={x: x is a positive integer and x<53-

(this should be read "A is the set of all x such that
x is a positive integer and x is less than 5.")

The Greek letter € (epsilon) is used to indicate
that an element belongs to a given set, as 2€A. (Read
this,"2 is an element of the set A" or "2 belongs to the
set A.")

The intersection of two sets A and B, written AMB,
is the set of all elements that belong to A and also be-
long to B: ANB = {x: x €A and xéB}.

The union of two sets A and B, written AUB,

is the set of all elements that belong to A or to B
or to both: AUB =[x: x€A or xEB}.




pomain: The set whose elements may serve as replacements for a
variable, X.

A3

Range: The values of £ (x) when you pick a domain for x.

For a set of erdered pairs, {(a,b), (3,6), (#,8), (x,¥)},
the set of all the first elements is the domain; a, 3, §, x.
The set of all the second elements is the range; b, 6, 8, Y.

In the open sentence, Y < £(x) = x, does each element of the
domain take you into one and only one element in the range?

x . £ (x)

1 : > 1

2 2

3 > 3

I1f the domain of this function is all the real numbers, then
the range is also all the real numbers.

Data Brief # 2

We frequently hear people say, "one function of the Police
Department is to prevent crime," or "Seveiil of my friends at-
tended a social function last night," or "My car failed to function
when I tried to use it." In mathematics we use the word "function"”
somewhat differently than we do in ordinary canversation; as you
have probably learned in your previous study, we use it to denote
a certain kind of aseociation or dorrespondence between the
members of two sets. ’

For instance, we note such an association between the number
of feet a moving object travels and the difference in clock read-
ings at two separate points in its journey: between the price of
eggs and the cost of making a cake; between the length of a
steel beam and its temperature. Additional examples of such as-
sociations accour in geometry, where, for example, we have the
area of the circumference of a circle associated with the lenqgth
of its radius. .
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In all of these examples, regardless of their nature, there
seems to be the natural idea of a direct connection of the elements
of one set to those of another; the set of distances to the set
of times, the set of lengths to the set of thermometer readings,
etc. It seems natural, therefore, to abstract from these various
cases this idea of association or correspondence and examine
it niore closely.

Let us start with some very simple examples. Suppose we take
the numbers 1, 2, 3, and 4, and with each of them associate
the number twice as large: with 1 we associate 2, with 2
we associate 4, with 3 we associate 6, and with 4 we as-
sociate 8. An association such as this is called a function,
and the set {1, 2, 3, 4} with which we started is called the
domain of the function. We can represent this association more
briefly if we use arrows instead of words: 1—2, 2—+4, 3—6,
4-—8,.T There are, of course, many other functions with the same
domain; for example, 1—2, 2—]1, 3—2, 4—5,

It happens that these two examples deal with numbers, but
there are many functions which do not. A map, for instance,
associates each point on some bit of terrain with a point on a
piece of paper; in this case, the domain of the function is a
geographical region, We can, indeed, generalize this last ex-
ample, and think of any function as a mapping; thus, our first
two examples map numbers into numbers, and our third maps points
into points.

What are the essential features of each of these examples?
First, we are given a set, the domain. Second, we are given a
rule of some kind which associates an object of some sort with
each element of the domain, and, third, we are given some idea
of where to find this associated object. Thus, in the first ex-
ample above, /e know that if we start with a set of real numbers,
and double =ach, the place to look for the result is in the set
of all real numbers. To take still another example, if the domain
of a function is the set of all real numbers, and the rule is
"take the square root," then the set in which we must look for
the result is the set of complex numbers. We summarize this dis-
cussion in the following definition:

Definition 1-1. If with each element of a set A there is

associated in some way exactlz one element of a set B, then
this association is called a function from A to B.

It is common practice to represent a function by the letter
"£" (other letters such as "g" and "h" will also be used.) I
X 1is an element of the domain of a function £, then'the object
which f associates with x is denoted £(x) (read "the value
of £ at x" or simply "f at x" or "f of x"); f(x) is
called the image of x. Using the arrow notation of our ex-
amples, we can represent this symbolically by

f: x—rf(x)

(read "f takes x into f(x)"). This.notation tells us nothing
about the function f or the element x; it is merely a re-
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statement of what "£(x)" means.

The set A mentioned in Definition 1-1 is, as has been
stated, the domain of the function. The set of a'l objects
onto which the function maps the element of A is called the
range of the function; in set notation,

Range of f = {f(x): x € A).

The range may be the entire set B mentioned in the definition,
or may be only a part thereof, but in either case it is in-
cluded in B,

It is often helpful to illustrate a function as a mapping,
showing the elements of the domain and the range as points and
the function as a set of arrows from the points that represent
elements of the domain to the points that represent elements of
the range, as in figure l-la. ilote that, as a consequence of
Definition 1-1,

Figure 1-la. A function as a mapping.
to each element of the domain there corresponds one and only one
element of the range, If this condition is not met, as in fiqure
1-1b, then the mapping pictured is nct a function. In terms of
the pictures, a mapping is not a function if two arrows start
from one poini; whether two arrows go to +!:« same point, as in
Figure l-la, is immaterial in the definitic.. This requirement,
that each element of the domain be mapped onto one and only one
element of the range, may hexaxbkxaxy seem arbitrary, but it
turns out, in practice to be extremely convenient.

Figure 1-1b. This mapping is NOT a fu.iction.




Since most of the functions we will be dealing with will
have domains and ranges in the set of real numbers. it is con-
venient to represent the domain by a set of points on a number
line and the range as a set of points on another number. line,
as in figure 1-14.

Specifically, consider the function £, discussed earlier,
which takes each element of the set 1, 2, 3, 4 into the number
twice as great. The range of this function is 2, 4, 6, 8 and
f maps its domain onto its range as shown in Figure 1-1d. We
note that, in this case, the image of the element x of the domain
of f 1is the element 2x; hence we may write, in this instance,
"£(x) = 2x, amd f is completely specified by the notation

f: x—'zx' X = 1' 2' 3' 4-

In this case, the way in which £ maps its domain onto its
range is completely specified by the formula £(x) = 2x, Most
of the functions which we shall consider can similarly be de-
scribed by appropriate formulas. If, for example, £ is the
function that takes each number into its square, then it takes
2 into 4 (that is, -f(2) = 4), it takes -3 into 9 (that is
f(-3) = 9), and in general, it takes any real number X into
x2. Hence, for this function, f(x) = x°, we may write f£: x——rx2,
The formula f(x) = x? defines this function £, and to find the
image of any element of the domain, we can merely substitute in
this formula; thus, if a - 3 is a real number, then f(a-3) =
(a-3)% = a? - 6a + 9. Similarly, if we khow that a function £
has f(x) = 2x -3 for all -x ¢ R (we use R to represent the
set of real numbers) then we can renresent £ in our mapping
notation as f: x 2x - 3, and to x in the expression 2x - 3

notation as f: x—2x - 3, and to find the image of any real
number we need only substitute it for x in the expression
2x - 3; thus £(5) = 2(5) -3 =7, £(/2) = 2/2 - 3, and if k + 2
is a real number, then . )

f(k + 2) = 2(k +2) -3 =2k +1.

Figure 1-14d. f: X"-"’Zx, X = 1' 2' 3' 4




Strictly speaking, a function is not compleately described
unless its domain is specified. In dealing with a formula,
however, it is a common and convenient practice to assume, if
no other information is given, that the domain includes all real
numbers that yield real numbers when subsfituted in the formula.
For example, if nothing further is said, in the function
£: x--+1/x, the domain is assumed to be the set of all real
pumbers xkax except 0; this exception is made because 1/0
is not a real number. Similarly, if f is a function such

that f£(x) = V1 - x2?, we assume, in the absence of other in-
‘formation, that the domain is {x: ~1 < x < 1}, that is, the set
of all real numbers from -1 to +1 inclusive, since only ' these
real numbers will give us real square roots in the expression

for f(x), When a function is used to describe a physical
situation, the domain is understood to include only those numbers
that are physically realistic. Thus if we are describing the
volume of a balloon in terms of the length of its radius,

f: r--+V, the domain would include only positive numbers.

Another way of looking at a function, which may help you to
understand this section, is to think of it as a machine that
processes elements of its domain to produce elements of its
range. The machine has an input and an output; if an element
x of its domain is fed on a tape into the machine, the element
£(x) of the range will appear as the output, as indicated in
Figure 1l-le.

\ x/

/ £\

Figure l-le )
A representation of a function as a machine.’

A machine can only be set to perform a predetermined task.
it cannot exercise judgement, make decisions, or modify its in-
structions, A function machine £ must be set so that any
particular input x always results in the same output £(x);
if the elememt x is not in the domain of f, the machine will
jam or refuse to perform. Some machines - - notably computing
machines - - actually do work in almost exactly this way.




Data Brief # 3

A graph is a set of points. If the set consists of
all points whose coordinates (x,y) satisfy an equation in x
and y, then the set is said to be the graph of that equation.
If there is a function f such that, for each point (x,y) of
the graph, and for no other points, we have y = £(x), then
we say that the graph is the graph of the function f. The
graph is perhaps the most intuitively illuminating represen-
tation of a function; it conveys at a glance much important
information about the function. The function x—x*, (when
there is no danger of confusion, we sometimes omit the name
of a function, as "f" in f:x——x2) has the parabolic graph
shown in Figure 1-2a. We can look at the parabola and get a
clear intuitive idea of what the function is doing-to the
elements of its domain. We can moreover, usually infer from
the graph any limitations on the domain and the range. Thus,

y

Figure 1-2a,
Graph of the function f£:x——+x?

it is clear from Figure 1-2a, that the range of the function
there graphed inc¢ludes only non-negative numbers, and in the

function f:x—/25 - x?2 graphed in Figure 1-2b, the domain

{x: -5 < x < 5} and range {y: 0 <y <5} are easily determined,
as shown by the heavy segments on the x-axis angd y-axis re-

spectively.
(0,5)

(=5/0) |
<« Domain

Figure 1-2b,
Graph of the function f;x=—/25-x2




Another illustration: the function
£: x—x/2, 2 < x <6
has domain A = {x: 2 < x < 6} and range B= {f(x) : 1< £(x) £ 2}.
In this case we have used open dots at 2 on the x-axis and
at 1 on the y-axis to indicate that these numbers are not
elements of the domain and range respectively. See Figure l-2c.

ra*ge3
3 1l ¢

Vet -
- v

2 6
+domain—

Figure 1l-2c.
Graph of the function f: x—+x/2, 2 < X £ 6.

As might be expected, not every possible graph is the
graph of a function. In particular, pefinition 1-1 requires
that a function map each element of its domain onto only one
element of its range. In the language of the graphs, this
says that only one value of y can correspond to any value of
x. if, for example, we look at the graph of the equation
x? + y? = 25, shown in Figure l-2d, we can see that there are

Y
(0,5)

0,‘-5)

gFigure .122d.
graph of the set § = {(x,y) : x2 + y? = 25},

many instances in which one value of x is associated with
two values of y, contrary to the definition of function.

To give a specific example, if x = 3, we have both y = 4 and
y = -4; each of the points (3,4) and (3,-4) is on the graph.
Honce this is not the graph of a function. We can, however,

break it into two picces, the graph of y = V25 - »* and the

graph of y = =~ V25 - x? (This makes the points (-5,0) and
{(5,0) do double duty), each of which is the graph of a function.

”
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Figure
Graph of

- ('5 l02 —

(01-5)
Figure 1-2f.

Graph of y = ~/25 - x*

If, in the xy-plane, we imagine all possible lines
which are paraliel to the y-axis, and if any of these lines
cuts the graph in more than one point, then the graph defines
a relation that is not a function. Thus, in figure l-2g,

(a) depicts a function, (b) depicts a function, but (c)
does not depict a function.

Yy
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Data Brief # 4

We have intooduced the general idea of function, which
is a particular kind of an association of elements of one set
with elements of another. We have also interpreted this idea
graphically for functions which map real numbers into real
numbers. In the previous sections general ideas were presented
and specific ideas were only used for examples. 1In this section
some specific functions will be studied. ’ :

Let us think of a man walking north along a long straight
road at the uniform rate of 2 miles per hour. At some par-
ticular time, say time t = 0, this man passed the milepost
located one mile north of baseline road. An hour befor this
which we shall call time = -1, he passed the milepost lo-
cated one mile south of Baseline Road. An hour after time
t =0, at time t = 1, he passed the milepost located three
miles north of Baseline Road. 1In order to form a convenient
mathematical picture of man's progress, let us consider miles
north of Baseline Road as positive and miles south af as
negative. Thus the man passed milepost -1 at time ¢t = -1,
milepost 1 at time t = 0, and milepost 3 at time ¢t = 1.
Using an ordinary set of coordinate axes let us plot his
position, as indicated by the mileposts, versus time in hours.
This gives us the graph shown in Figure 1-3a.

In t hours the man travels 2t miles. Since he is
already at milepest 1 at time t = 0, he must be at
milepost 2t + 1 at time t. This pairing of numbers is an
example of a linear function.

Now let us plot the man's speed versus time. For all
values of t during the time he is walking his speed is 2 -
miles per hour. This is graphed in Figure 1-3b.

digtance in )
3|mifles
2
)]
-1/l 1 2 3 time in hours
1
Figure 1-3a speed

Graph of the function

f: t——>d = 2t + 1

time

R -1 I 273 % 95

graph of the function
g: t—s = 2

Figure ]1-3b
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When t = -1 his speed is 2, when t = 0 his speed is 2,
etc.; with each number t we associate the number 2. This
mapping, in which the range contains only the one number 2,
i{s an example of a constant function.

DEFINITION. If with each real number X we associate
one fixed number ¢, then the resulting mapping,

f: x—>c¢,
is called a constant function.

The discussion of constant function can be disposed of
in a few lines. The function we just mentioned, for example,
is the constant function g: t—2. The graph of any constant
function is a line parallel to the horizontal X-axis.
Constant functions are very simple, but they occur over and
over again in mathematics and science and are really quite
important. A well lnown example from physics is the Juagni-
tude of the attraction of gravity, which is usually taken to
be constant over the surface of the earth-- though, in this -
age, we must recognize the fact that the attraction of gravity
varies greatly throughout space.

The functions we examine next also occur over and over
again in mathematics and science and are considerably more
interesting than the constant functions. These are the linear
Functions. Since you have worked with these functions before,
we can begin at once with a formal definition.

DEFINITION. A function f defined on the set of all
real numbers is called a linear function if there exist real
numbers m and b, with m# 0, such that

£(x) = mx + b.

Example 1. The function £: x—32x + 1 1is a linear
function. Here f£f(0) =1, £(1) = 3, f(~1) = -1. This function
was described earlier in this section in terms of t, with
£(t) = 2t + 1. Its graph can be found in Figure 1l-3a.

We note that the graph in Figure 1-3a appears to be a
straight line. The graphs oi all linear functions are
straight lines.

An important property of any straight line segment is
its slope, defined as follows.

DEFINITION. The slope of the line segment from the
point p(xl, y,) to the point Q(x,, yz) is the number

Yo - Y1
X2-x1 -

provided xl # Xy If xl = Xq the slope is not defined.




Note that y1 - Y, Yy - Y1

X1

So that it is immaterial which of the two points P or Q we

take first.

What about the geometric meaning of the slope of a
segment? Suppose, for the sake of definiteness, we consider
the segment joining P(1,2) and Q(3,8). By our definition, the
slope of this segment is 3, sénce (8 - 2)/(3 - 1) = 3. Note
that this is the ¥ertical distance from P to Q divided by the
horizontal distance from P to Q, or, in more vivid language,
the rise over run.

l
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Let us think of the segment PQ as running from left to
right, wo that the run is positive. If the segment rises, then
the "rise" is positive and the slppe is positive. If/the
segment falls than the “rise" is ncgative and the slope is

therefore negative. The stecper the segment, the larger the
absolute value of the slope,

a;'( RUMTS)

It has been stated that slope is not defined if X, = X,.
In this case the segment lies on a line parallel to the
y-axis. It is important to distinguish this situation from
the case y; =y, in which the line has a slope and it is 0.

Note that lines having zero slope, that is lines
parallel to the x-axis, are graphs of constant functions. On
the other hand, lines for which no slope is defined, that is
lines parallel to the y-axig, cannot be graphs of any functions

because, with one value of x, the graph associates more than one
value--in fact, all real values.

|9




If a line is the graph of a linear function £: x
then for any Xy and Xpr X # X5, the slope of the segment
joining

joining(xl , F(X:\) 4o @ ; Fg@is by definition

\‘F(XQ) = F[)(l)
Xg- %

g
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Data Brief # 5

. A function of importance in many branches of mathematics is
"the absolute-value function, f: x—s |x| for all x € R. The
absolute value of a number describes the size, or magnitude, of
the number, without regard to its sign; thus, for example

12l = |-2] = 2 (read "|2|" as "the absolute value of 2"). A common
definition of |x| is

Definition 1-5. :

x, ifx20
Ix] -{
=X, 1f x < 0,




Pr——

[U—

an———
" »
.

If a line is the graph of a linear function f£: x

then for any Xy and Xyr  Xg # X5, the slope of the segment
joining

joining(xl , F(X;D 400 6(3 ) F@aais by definition

Fxg) - Fex)
Xg- ¥,
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Data Brief # 5

A function of importance in many branches of mathematics is

‘the absolute-value function, f: x—s |x| for all x € R. The

absolute value of a number describes the size, or magnitude, of
the number, without regard to its sign; thus, for example

2] = |-2| = 2 (read "|2|" as "the absolute value of 2"). A common
definition of |x| is

Definition 1-5.
T x, if x>0 )
'x| = { ’ .

-x, 1fx< o.

mx + b,
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- You shoul.d be able to see, from the first definition of this fune-
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‘tion given above, that this graph consists of the origin, the part

i
. of the line y = x that 1ies in Quadrant I, and the part of the line .

Y = -x that lies in Quadrant II.

There are two important theorems about absolute values, ' ;
Theorem 1-1, For any two real numbers a and b, |ab| =

laj-]v].

&

T =
Proof: |[a]:[b| = ./ a '.,/ b2 = /222 = ,/(ab)2 = |ab]. : .
Theorem 1-2, For any two real numbers a and b, : R

la + bl < |a < lal + (o], ' A
Proof: By Definition 1-6, Theorem 1-2 is equivalent to Do

Y(a + v)2 ¢ .,/aa + 4/ v2, @:: -
which is equivalent to SRR
a2 + 2ab + b° Va2 /b2 4 p2 : ¥
£ a2 + 2/a b™ + b€, B
and hence to  2ab g 2,/a2 /22
or - ab < /a2 (2)

Now equation (2) is easy to prove.
site signs, then ab ¢ O and (2

we have ab =,/a2

Hence in any case ad 5/;5 \/;5,

and therefore (1) holds. q.e.d. ' "
Thus, for example, |(-2)(3)| = |-6] = 62 : 3 = l-el

'('2)4'(3)'-1(5-24-3-|-2|+|3|, and .- “”

'(02) + ('3)| s« 5m22+3= |-2| + '-3|. . ) il

If a and b have oppo-
holds with the < um. Otherwise,

B,



 patz Brief # 6

Quite frequently in science and in everyday life we encounter
quantities that bear a kind of reciprocal relationship to each
other. With each value of the temperature of the air in an automo-
bile tire, for example, there 33 associated one and only one value
of the pressure of the air against the walls of the tire. Converse-
ly, with each value of the pressure there 48 associated one and
only one value of the temperature. Two more examples, numerical
ones, will be found below. o

Suppose that £ is the function x—>x + 3 and g is the
function x—>X -~ 3. Then the effect of f is to increase each
number by 3, and the effect of & is to decrease each number by
3, Hence f and g are reciprocally related in the sense that
each undoes the effect of the other. If we add 3 to & number and
then subtract 3 from the result we get back to the original number,
In symbols

(gf)(x) = gl£(x)) = g(x +3) = (x+3)-3= x.

Similarly,

(rg) (x) = £(g(x)) = £(x - 3)=(x-3)+3=x
As a slightly more complicated example we may take
£f: x—>2x - 3 and g x—-a?-‘-—"é'-—.
Here f says "Take a number, double it, &nd then subtract 3." To
reverse this, we must adﬁ three and then divide by 2. This i3 the
effect of the function E&. In symbols,
_ (&£ (x) = (£(x)) = (2x - 3) == 3)+3 . x.
Similarly, .
() (x) = £(g(n) = fEFD) = 2252 -3 = x.
In terms of our representatioh of a function as a machine, the
g machine in each of these examples 1s equivalent to the £ machine
running backwards; each machine then undoes what the other does,
and if we hook up the two machines in tandem, every element that
gets through both will come out Jjust the seme as it originally went
in. ' S ‘
We now generalize these twe examples in the following defini-
tion of inverse functions.




‘Definition 1-8. If f and g are functions so related
that (£g)(x) = x for every element x 1in the domain of g and
(ef)(y) = y for every element Y in the domain of f, then f
and g are said to be inverses of each other. In this case both _
f and g are said to have an inverse, and each is said to be an
inverse of the other.

As a further example of the concept of inverse functions let
us examine the functions f: x-—-»x3 and g: x-——a-iﬁa In this case

(fe)(x) = £(g(x)) = £( 3&) = ( %)%« x

and (ef)(x) = g(r(x)) = g(x3) = 3T - x
for all x € R. o

If a function f takes x into y, that is, 1f y = r(x),
then an inverse g of f must take y right back into x, that
is, x = g(y). If we make a picture of a function as a mapping,
with an arrow exténding from each element of the domain to its
image, as in Figure 1-6a, then to draw a picture of the inverse
function we need merely reverse the arrovs, as in Figure 1-6b, \‘t

Figure 1-6a. A function. Figure 1-6b., 1Its inverse.

We can take any mapping, reverse the arrows in this way, and
obtain another mapping. The important question for us, at this voins,
. . 18 this: 1If the original mapping is a function, will the reverse map-
ping necessarily be a function also? In other words, given a




function, does tnere exist another function that precisely reverses
the effect of the given function° We shall see that this is not
always the case.

___The definition of a function (Definition 1 1) requires ‘that
to ee eech element of the domain there carrespmds exactly one element
of the range; it 1s perfectly all right for several elements. of
the domain to be mapped onto the same el ement of the range (the
constant function, for example, maps all of its domain onto one
element), but 1f even one element of the domain is mapped onto more
than one element of the range, then the m.oping jJust isn't a func-
tion. 1In terms of a picture of a function as a mapping (such as
Figures 1-la and 1-1c), this means that no two arrows may start
from the same point, though any number of them may end at the same
point. But if two or more arrows go %o one point, as in Figure

1-6¢, and if we then reverse the arrows, as in Figure 1-6d, we
will have two or more arrows starting from that point (as in Pigure

1-1b), and the resulting mapping is not a function. Since the word
"inverse" 1s used to describe only a mapping which is a function,
we can coirclude that not every function has an inverse.

X, Y, X Y
Xy 7 X e T
AR A “ :::::::::::::=’ YRE
X, Xy
A B A B
Figure 1.6c, Figure 1-6d.

A specific example is furnished by the constant function f: X w—ap3
since £(0) = 3 and £(1) = 3, an inverse of f would have %o map
3 onto both O and 1. By definition, no function can do this.




Activity ¢ 1

For each problem draw a diagram that illustrates the function

as in the example f(x) = x in the text. For each problem the

domain is the set of all real numbers. State by rule or roster
~the range of each function. Then graph each function.

l, f(x) = x + 3

2. f(x) = 2x + 5
3. f(x) = le -1
4. £(x) = |1 - x|

5. f(x) =x* +1

-

6. Why do you think £(x) = 7'is called a constant function?




Activity ¢ 2

o l, VWnich of the foliowing '¢o not describe mnctions, when x,
1 W o
: T a) £ x—#ag - b d) It x—>ye x2 £) r:
_ b) f: X—sX e) f: x—sall y<x g) £: x—s>16 %0 .
¢) £1 Xm—soex - . *
2. Depiet the mapping of 2 few elements of the .domaiix into elements

of the range for eacn of the Exercises 1(2), (c), end (a) above,
. as was donz in Figure .1-la.

t .
3. Specifly the domain ‘end ra.nge of the following functions, where

, " x, £f(x) € R. .
; . a) f: x—>Xx ‘?) £: x=—> =7 . .
v) & X —> %2 e) f£: x—~ 3
e) £ x—> /% ’ : x© -
4, If £ x—s2x+ 1, find ,
- ' a) r(o) . .
P b) f£(-1) ‘
c) f(lOO)
a) f(-) )
5. Given the funection f: X—> x2 - 2x + 3, find :
a) £(0) o : . ‘
) f£(-1) ~
e) r(a) e
4a) f(x - 1)
. 6. 1t r(x) = /5% 16, ‘find
; a) f(4). , ‘ ¢) £(5) ~e) f(a-1)
) £(-5) a) f(a) £) f(w)

:

7 If x€&€ R, given the functions
ro x"“-‘#x

2
. X
s. x«-—blc

and

are £ and g " the come function? Wny or why not?

9 Vhat nurber or numbers have the imnge 15 vuader the following
functions? ’ -

, a) £ x—>x
- { 7 b) i x—> ax
c) f: x—> V%2 4+ 212. . ‘ .

2
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] Activity ¢ 3 . T e
. .
B 1. Which of the following graphs could represent functions?
| (a) Y t— (v Id
T i = -
i 2 ) !
i . ! , . 7
{ x X
R o o,
R R
. ! I
i _ .
—d )
(c) (d)
| x x
' . o
| | 4
|
i
| B
| 2. Suppose that in (a) above, f: x—» £(x) 18 the function whose
* greph is depicted. Sketch : '
a) g: x—s -£(x) b) g: x—sr(-x)
] 3. Graph the following functions.
a) f: x—s 2x
b) - x—-»% :
¢) f: x—>y=14.xand xand Y are positive integers.
d) f: x— -, /4 - x2
4, Qraph the following functions and indicate the domain and
ol range of each by heavy linca on the x-axis and y-axis respecs

. tively,

hl) £: Xeepy &_ 2<y<¢s3 A L 1
b) £ x—p -\}9 -x2 L . {‘

C
I
-y




Activity ¢ 4

1. Pind the slope of the funotion £ 1f, for a1l res) m-biri

W‘ w _

a) f(x) =3x -7 . St ‘3 AT
b) f(x) =6 -2¢x - b D R S I
6) 2f(x) =3 -x . S ;‘7%
F , d) 3(x) = 4x -2 T LRl ,e,’ o
2. Pind a linear function r whose slope 13 2 and such ﬂuﬁ ,%, UL
8) £(1) = o) £(3) =k - .l RS
© b)) £(0) = ~T__ @) 0(8) w3 +—~—-—~h ‘5.7,*: ;
“.3." Find the 81ope of the Jinear function f if r(1) -a ma e
a) £(0) =4 : ¢) £(5)=5 : "
7 b) £(2) =3 . a) £(6) = -13 .
N, PFind a function whose graph is the 1line joining the MI - ’
. a) P(1, 1), Q(2, ¥) ... e) P(1, 3), (1,8 . e * ) -
. v) p(-7, ¥), Q(-5, 0) a) P(i, %), Q(-2, ¥) '
5. Given f: x—» =3x + ¥, find a function whose graph is muol -

. to the graph of t and passes through the point

b o a) P(1, %) . e) P(1, 5) ‘:
I b) (-2, 3) a) Pp(-3, -4) Lol
6.. If f 1is a constant function find £(3) 1£¢ ' =~ . .-
j - -a) £(1) =5 oo !
| .b) £(8) = -3 _ .
.e) £(0) =& ° '

7. Do the points P(1, 3), Q(3. -1), and 8(7. -9)all lde ona nn-
. gle line? Prove your assertion.
8." The graph of a linear function f jasses through tho pol.ntl
' P(100, 25) and Q(101, 39). Pind : .
a) r(100.1) o
v) £(100.3) -
9. The graph of a linear runction r passes throush tho points
P(53, 25) and Q(54, -19). Find
a) 1(53.3)
5 b) . £(53.8) P
b 10, Pind a linear function with graph parallel to the line uth
o equation x - 3y + 4 = 0 and passing through the point of inter-
; " section of the lines with equauona x+ 7y +1=0and
X-2y+ 8w0,
i’ 11, Oiven the points A(1, 2), B(S, 3), c(7, 0), and n(a. -1), prcvo
P that ABCD is a parallelogram. z g
12, PFind the coordinates of the vertex C of the parallelogram.ABCD
; Af AC 18 a diagonal and the other vertices are the pointss

a) A1, -1), B(3, ¥), D(2, 3);
©®) Ao, 5),  B(, -7), D(, 1)
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Activity # 5 . . c k

a) For what x € R 18 1t true that /X2 = X

b) For what x € R 1s 1t true ‘that »/ %2 = -x?

a) For what x € R is 1t true that Ix = 1] = x = 1!
b) For what x € R 1s 1t true that |x - 1{ - x4+ 1t
¢) Sketch a graph of £: x—alx - 1l. I

d) Sketch a graph of 1 x—>|x| - 1.

Solve: o '

a) Ix| =1

.b) Ix+2l =7
e) Ix -3 =-X

For what values of X 18 it ‘true that ;
a) Ix-21<1 L A

) Ix-5l>2

¢) Ix + 8] <0.2

a) l2x - 3| < 0.0%

e) |dx+5|<0.12 _ ,
Show that x2 3 x-|x| for a1l x € R.
Show that |a-b|$|nlf|bl. ‘ _
Show that %(a + b+ |a~bl) s equal to the greater of & -
and b, Can you write & simiiar expression for the lesser of
Sketoh: y = Ix| + Ix 2|. (Hint: you must consider, SepR-
pilities x <0, 0K X< % and x 2 2:)

- bt o Se S
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Find an inverse of each of the following functions:

8) Xx—ax -7 ¢) x—s1/x

b) x—s5x + 9 ' o
Solve each of the following equations for x in terms of y
and compare your answers with those of Exercise 1:

8) yax-7 ©) y=1/x

b) y=5x4+9

Justify the following in terms of compositelfuncti,ona and in-
verse functions: Ask someone to choose a number, but not to
tell you what it 1s. "Ask the person who has.chosen the number
to perform in succession the following operations. (1) Te
multiply the number by 5. (11) To add 6 to the product.

(111) To multiply the sum by &, (1v) To add 9 to the product.
(v) To multiply the sum by 5. Ask to be told the resuit os
the last operation., If from this product 165 g subtracted,
and then the difference is divided by 100, the quotient will be
the number thought of originally, ™ ' '
(V. W. Rouse Ba11), .




